Name:	Per:	Date:	EN	
Mu Shoe extension: Coefficient of Friction Lab				

Question:

What sports shoe offers the greatest amount of traction for both lateral and longitudinal movements as reflected by the coefficient of static friction values?

Procedure:

- 1. Place shoe on flat surface and connect to a newton scale.
- 2. Gradually increase the magnitude of force exerted on the show until the stationary shoe budges from its resting position.
- 3. The force which just barely budges the shoe from rest is the maximum value of the static friction which this show can experience.
- 4. Add 100 g, 200g 500 g and 1000 g for additional data.

Since friction is a function of the normal force. Calculate the Normal Force for each trial . In this experiment the mass $x 9.8 \text{ m/s}^2$ = Normal Force

Static Friction : is the amount of force (N) to just budge the shoe

Sliding Friction: is the amount of force (N) to keep the show moving at a constant rate.

 $F_{friction}$ - μF_{Normal}

Type of shoe	Mass	Weight (F_N)	F	μ show your work
STATIC		$(mx9.8m/s^{2})$	(friction)	
	200 g + shoe			
	=			
	500 g+ shoe			
	=			
	1000g + shoe			
	=			
	200 g+ shoe			
	=			
	500 g+ shoe			
	=			
	1000g + shoe			
	=			

Identify variables think about what friction force depends on what force?

__ Independent variable. Hint: all the data goes on the same graph

Dependent variable for both experiments.

Type of shoe	Mass	Weight (F_N)	F	μ show your work
STATIC		$(mx9.8m/s^2)$	(friction)	
	200 g + shoe			
	=			
	500 g+ shoe			
	=			
	1000g + shoe			
	=			
	200 g+ shoe			
	=			
	500 g+ shoe			
	=			
	1000g + shoe			
	=			

Graph: your results.

CLASS DATA

Type of shoe STATIC	μ	Type of shoe Sliding	μ

TRENDS:

CONCLUSIONS: